
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015                                                                                                         1454 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

 

Neural Network Predictive Controller for 
Improved Operational Efficiency of Shiroro 

Hydropower Plant 
Ojo O. Adedayo, Gbadamosi S.L and Ale D.T 

 

Abstract— The development of efficient models and controllers is central to better understanding and analysis of operational efficiency of 
modern hydropower plants. In this work, an intelligent Levenberg-Marquardt based Neural Network Predictive Controller (NNPC) was 
developed for Shiroro hydroelectric power station using actual data obtained from the plant operation. Results obtained after training and 
simulation of the system show that neural network technique serves as an efficient approach of designing hydroelectric power station 
models and controllers. 

Index Terms— Neural Network Predictive Controller, hydropower plant, operational efficiency, Artificial Neural Network. 

——————————      —————————— 
 
 1   INTRODUCTION 
Since the advent of electricity, the world has relied on it for its 
ever-growing energy needs for domestic and industrial 
applications. This increasing demand for electric energy has 
necessitated the design and implementation of robust and 
complex networks of power stations and distribution outlets. 
However, this trend comes with its inherent challenges; 
security, efficiency and stability. These challenges are even 
more evident in the aspect of rotor oscillations and difficulty 
in re-attaining stability after the introduction of disturbances.  

To address these problems, Power System Stabilizers (PSS) 
have been employed. These PSSs are quite common but have a 
prominent shortcoming of yielding unsatisfactory 
performance especially when employed for multi-area 
applications. This necessitated yet another requirement for 
improvement. As Proportional Integral Derivative (PID) 
controllers became popular, they quickly found their use in 
power systems, this is partly due to their versatility and high 
reliability. However, the overall performances of power 
system PID controllers do drop significantly with varying 
degrees of input range and uncertainties. 

The standard form of representing the PID control 𝑢(𝑡) is 
expressed as: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 � 𝑒(𝜏)𝑑𝑑 + 𝐾𝑑
𝑑𝑑(𝑡)
𝑑𝑑

𝑡

0
   (1) 

Where the quantities 𝑦(𝑡), 𝑛(𝑡), 𝑑(𝑡) are the measurable 
output, the sensor noise, and the system disturbances 
respectively. While the parameters 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 are carefully 
selected values that models the plant in terms of settling and 
rise times, steady state error and overshoot in response to 
alterations in demand signal, and 𝑒(𝑡)is the error in deviation 
from the desired reference output [1]. 

The search for power system stability and efficiency has 
turned the attention of researchers to various softcomputing 
and intelligent approaches [2]-[10] in the design of power 
system controllers. These include Artificial Neural Network 
(ANN) controllers which attempt to replicate the pattern 
matching capacity of the human brain [11], the fuzzy Inference 
System (FIS) which employs a gradually varying logic ranging 
from complete exclusion to complete inclusion as against crisp 
binary logic of 1s and 0s, and a host of other hybrid systems 
like Adaptive Neurofuzzy Inference System (ANFIS). 

The unique advantage offered by the introduction of ANN 
(and other forms of softcomputing) controllers is the ability to 
eliminate the computational intricacies and explicit 
mathematical relations within its hidden layers and yet 
produce accurate results at its output. This property is one of 
the reasons that informed the idea of this work. 

In this work, an intelligent Levenberg-Marquardt based 
Neural Network Predictive Controller (NNPC) was developed 
for Shiroro hydroelectric power station. This power station is 
situated in the Shiroro Gorge on the Kaduna River, 
approximately 60 km from Minna, capital of Niger State, in 
close proximity to Abuja, Nigeria's federal capital territory. 
Commissioned in 1990, the station has an installed capacity of 
600MW [12]. 
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1.1   HYDROPOWER PLANT MODEL REPRESENTATION 

Broadly, hydropower plant model representations are of two 
forms: Non-elastic (linear) models and elastic (nonlinear) 
models. The corresponding representative equations in both 
cases highly depend on the system complexity and can be 
classified using same criterion [13]. A fairly less complex 
linearized representation of the incremental torque with 
respect to the gate deviation for a hydropower station can be 
written as: 

                     
∆𝑃𝑚(𝑠)
∆𝑍(𝑠) =

(1 − 𝑠𝑇𝑤)
(1 + 𝑠0.5𝑇𝑤)                                                     (2) 

This equation is valid under several assumptions on hydraulic 
resistance, volume flow, water flow compressibility and gate 
position. 

For the nonlinear model (with elastic water column) however, 
the input-output relationship with respect to incremental 
torque and guide vane positional changes is expressed as: 

∆𝑃𝑚(𝑠)
∆𝑍(𝑠) =

𝑎23 + (𝑎11𝑎23 − 𝑎21𝑎13)𝑇𝑤𝑇𝑒
𝑡𝑡𝑡ℎ(𝑠𝑇𝑒 + 𝐹)

1 + 𝑎11
𝑇𝑤
𝑇𝑒
𝑡𝑡𝑡ℎ(𝑠𝑇𝑒 + 𝐹)

         (3) 

Where F is the loss due to the friction within the hydraulic 
structure, 𝑎𝑛𝑚 are the partial derivatives of flow and torque 
with respect to head, speed and guide vane position 
respectively [13], and 𝑇𝑒 is the travel time. 

  

2.   LEVENBERG-MARQUARDT (LM) ALGORITHM 
Levenberg-Marquardt (LM) Algorithm second order 
algorithm that trains an artificial neural network by repeated 
update of network weights and biases by an optimization 
technique. The algorithm (which is essentially a trust region 
type of the Gauss-Newton method) is fast, efficient and often 
the most recommended choice in supervised training [14]. 
However, LM algorithm consumes relatively more memory 
and processing resources than GDA and RP algorithms.  

The aim of the Levenberg Marquardt layer-by-layer 
backpropagation algorithm is to modify the weight and bias 
values of the different layers of the network in order to 
repeatedly minimize an error function E(w) until a specified 
minimum value or a stop criterion is reached [15]-[16].  

    𝐸(𝒘) =
1
2�� 𝑒𝑝𝑚2

𝑀

𝑚=1

𝑃

𝑝=1

                  (4) 

where P is the number of input-target training patterns, and M 
is the number of outputs.  

For the ANN model framework for this work, there are [8×3] 
elements each in the input weight matrix and output weight 

matrix, [8×1] elements each in the input layer bias and output 
layer bias. These correspond to 64 elements. The network error 
 𝑒𝑝𝑚  is expressed as  

                     𝑒𝑝𝑚 = 𝑡𝑝𝑚 − 𝑜𝑝𝑚                (5) 

Where 𝑡𝑝𝑚 is the desired target, 𝑜𝑝𝑚 is the actual network 
output, m is the output node and p is the training pattern. 
And, 

          𝒐𝑘 = 𝒘𝑘𝒂𝑘−1 + 𝒃𝑘                       (6) 

             𝒂𝑘 = 𝑓𝑘(𝒐𝑘)                              (7) 

where 𝒂𝑘 and 𝑓𝑘 are the outputs and activation function in the 
kth layer. The adaptation in the weight is determined by: 

     𝚫𝒘 = (𝑱𝑻𝑱+ 𝜇𝑰)−1𝑱𝑻𝒆                   (8) 

where J is the Jacobian matrix  as expressed by Equation 9, 
and I is an identity matrix. 

     𝑱(𝒘) =  
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The Levenberg Marquardt algorithm for the feedforward 
ANN proceeds thus:  

Step 1: Supply the network with all the inputs and evaluate 
the corresponding outputs using Equations 6 and equation 7. 

Step 2: Find the Jacobian matrix 𝑱(𝒘) from Equation 9; 

Step 3: Compute the increment vector 𝚫𝒘 from Equation 8; 

Step 4: Determine the new performance index E(𝒘 + 𝚫𝒘); 

Step 5: If performance index in step 4 is smaller than the 
previous one (step 1), then multiply 𝜇𝑛 by 1

𝛽𝑛
 and obtain the 
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new weights 𝒘 = 𝒘 + 𝚫𝒘 and proceed to step 6, where 𝜇𝑛 is 
the coefficient of the identity Matrix in Equation 8 and 𝛽𝑛 is a 
real number ranging between 0 and 1. Else, multiply 𝜇𝑛 by 𝛽𝑛 
and proceed to step 3; 

Step 6: Decrease n by 1 and repeat steps 1 to 5 
Step 7: Repeat the entire steps until the stop criteria is met. 
 

3.  NEURAL NETWORK SYSTEM IDENTIFICATION 
In order to model the NNPC in this work, the following steps 
were taken: firstly, a neural network architecture was 
designed to closely and satisfactorily model the forward 
dynamics of the generating power plant, the network 
parameters were optimized for optimum values of layers and 
connection weights, and the network was simulated and the 
performance was evaluated. To achieve these, a Single-Input 
Single-Output (SISO) neural network was designed for the 
Shiroro hydropower plant. The multilayered network consists 
of 60 neurons in the hidden layer and 1 neuron in the output 
layer and appropriate input and layer biases were applied. 
The tansig transfer function was applied to the first layer 
while the purelin transfer function was applied at the output 
layer. A total of 778 data samples were used in training the 
feedforward neural network which was divided into training, 
validation and testing data in the ordered ratio of 70:15:15 
respectively. 

In other to attain rapid convergence, elimination of local 
minimal convergence as well as obtaining satisfactory overall 
network accuracy, the Levenberg Marquardt (LM) algorithm 
was employed in training the NNPC. More details on the 
model are listed in table X. The deviation in value between the 
plant output and the neural network actual output was 
applied as a training signal for the neural network. This 
process is highlighted by the NNPC algorithm represented in 
Figure 1.  

 

 

 

 

 

 

 

 

Figure 1: The predictive controller logic flow 

For the control input for the plant, the algorithm involved 
(Figure 2) first generates a reference signal which is supplied 
to the plant performance prediction submodel. Then new 
control input is generated. This step is aimed at generating a 
set of control input that effectively minimizes the cost 

function. If having evaluated the cost function, the desired 
performance is still not attained in terms of cost function 
minimization, the algorithm returns to the plant performance 
prediction submodel and the steps are repeated until a 
satisfactory performance is deemed attained. Once this stage is 
reached, the plant is supplied with the plant control input. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2: The flow chart for minimization of cost function. 
 
4.   RESULTS AND DISCUSSION 
The essence of validation in neural network data training is to 
ensure a separate set of data is used to evaluate the 
performance of the network outside the training data set. This 
is operation reduces the chances of the network being 
overtrained by stopping the training when the minimum 
validation error set is achieved. If overtrained, the network 
could return a minimal error for the training data set but an 
unsatisfactory error margin for other data leading to poor 
generalization. 

The essence of performance evaluation of a softcomputing 
network is to measure the degree of closeness of the network’s 
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output to the actual values as obtained from the physical 
phenomenon. In this work, the performance index employed 
is the Root Mean Square Error (RMSE) and the regression 
coefficient R. After the training phase, the neural network 
attained an R-value of 0.99374; this value indicates a very 
accurate neural network output in response to the training 
data. For the validation data set, a R-value of 0.99152 was 
observed as shown in Figure 4. This also represents a very 

high accurate network output in response to the validation 
data set impressed at the network input. In the same vein, the 
network yielded a R-value of 0.97122 when fed with the test 
data set which is a total of 116 plant sample data. Again, this 
shows that the network performed appreciably well for the  

 
 

 
 
 
 

 

 

 

 

Figure 3: Overall model for the hydropower plant showing the NNPC 

test data set. Examining the overall performance of the 
NNPC over the entire data range, it was observed that the 
network yielded a R-value of 0.99353. This value is quite 
close to unity and it indicates a very high overall network 
accuracy in modeling the Shiroro hydropower plant in terms 
of the water head as the input and the generated power as 
the output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The neural network predictive controller that was 
implemented in this work employs a neural network model 
of Shiroro hydropower plant with the sole aim of forecasting, 
with an acceptable accuracy level, the future performance of 
the hydropower plant. The NNPC thereafter computes the 
control input values that effectively optimize the plant 
performance. 

The first step taken in this model predictive control process 
was to determine the neural network plant model, which is a 
form of softcomputing approach to system identification. 
Next, the plant model was used by the controller to predict 
future performance of the plant. The results presented in this 
work were obtained on the platform of MATLAB’s Neural 
Network Predictive Controller toolbox. The cost horizon (N2) 
was set at 7. This value controls the number of times over 
which the prediction errors are minimized. The control 
weighting factor (𝜌) was set at 0.05, this is a function which 
multiplies the sum of squared control increments in the 
performance function. The search parameter (𝛼) was set at 
0.001and the control horizon (Nu), a factor which is a 
function of the number of times steps over which the control 
increments are minimized, was set at 2. 

When the simulation was completed, the input, the plant 
output, the neural network output and the error are shown in 
figure 5. It was observed that the initial errors were high but 
the errors were reduced with time which highlights 
robustness and overall stability and accuracy of the system. 

Figure 4: R-values for the neural network for different datasets 
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Having been widely reported as successful alternative 
approaches to traditional control systems in several 
applications, the overall system performance in the current 
application underlines these findings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.   CONCLUSION 
 
The development of efficient controllers and models are 
crucial in the quest of better understanding, control and 
analysis of operational efficiency of modern hydropower 
plants. In this work, the robust pattern matching and 
learning ability of neural network based systems were 
demonstrated through the design, optimization and 
simulation of an intelligent Levenberg-Marquardt based 
Neural Network Predictive Controller (NNPC) for Shiroro 
hydroelectric power station using actual data obtained from 
the plant operation. Results obtained after training and 
simulation of the system show that neural network technique 
serves as an efficient technique of designing hydroelectric 
power stations.  
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